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SUMMARY 
The collapse of a mixed fluid mass immersed in a vertically stratified fluid is studied analytically. Simple approximate 
theories are given for the initial stage of the process for a fully mixed fluid mass in two and three dimensions and for a 
partially mixed fluid mass in two dimensions. The solutions are obtained via an energy conservation principle and 
they are exact within the models. They compare favorably with approximate solutions of the same model obtained 
previously for the two-dimensional fully mixed case. 

1. Introduction 

The gravitationally induced collapse of a well mixed fluid mass in an incompressible fluid 
having a stable vertical density gradient is a phenomenon which has attracted some attention 
in recent years [1-11]. The basic system is that of a static, cylindrically shaped homogeneous 
fluid mass embedded within a fluid having stable vertical density stratification. The homogene- 
ous, or mixed, region is considered to be infinitely long in the axial direction so that the phe- 
nomenon is two-dimensional in a plane perpendicular to the cylinder axis. If the density of the 
mixed region is equal to that of the surrounding fluid at the level of the cylinder axis, the region 
will tend to flatten out or collapse into a sheet at the level of the axis since the fluid in the 
upper part of the mixed region is heavier, and that in the lower part lighter, than the surrounding 
fluid. Associated with this collapse process is radiation of energy from the collapsing mixed 
region into the surrounding fluid in the form of an internal gravity wave field. Properties of 
this system have been employed by various authors to model such physical phenomena as the 
turbulent wake of moving obstacles [5, 8-11], the flattening of airplane contrails [12], and the 
fine structure in the vertical density and velocity gradients in the oceans and atmosphere [13]. 

The purpose of this paper is to describe some very simple analytical models of the collapse 
process that are appropriate for the initial stage of motion. Two complementary formulations 
predict behavior that is somewhat different from the experiments of Wu [7] but is verified by 
the numerical solutions of Wessel [6]. A solution of a boundary value problem which is valid 
for asymptotically small time shows that the mixed region deforms into the shape of an ellipse. 
The second formulation uses this information and the fact that a hydrostatic pressure approxim- 
ation at the mixed region boundary is equivalent to conservation of energy in the mixed region. 

The solution for the two-dimensional cylindrical fully mixed case is compared with approxim- 
ate solutions of the boundary value problem obtained previously by Mei [5] and Padmanabhan 
et  al. [8]. The method also is utilized to obtain solutions for a two-dimensionM region in which 
the fluid in the mixed portion is linearly stratified but is less stable than its surroundings. The 
partially mixed region exhibits oscillatory behavior for certain values of the stability ratio (the 
ratio of the fluid stability interior to the mixed region to the stability of the fluid exterior to the 
region). Finally, the method is utilized to obtain the solution for the axisymmetric collapse of 
a fully mixed spherical fluid mass immersed in the stratified fluid. 

2. The mixed region collapse problem 

The idealized physical problem, as shown in Figure 1, is to determine the flow phenomena 
when a circular region of radius a0 of homogeneous fluid having density Po is released from rest. 
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• 

Figure 1. Coordinate system. 

This mixed region is surrounded by a stratified fluid of density p ( z ) = p o ( 1 -  flz) of infinite 
extent. The constant fl is an inverse length scale of the stratification and the quantity 

N = O = (fig)~ 

is called the V~is~il~-Brunt frequency of the stratified fluid. 
In all real applications, one expects that the fluid viscosity and the diffusivity of whatever 

material (or heat) that causes the density stratification would play a role in the resulting fluid 
motions. This is true here but significant effects are expected only at a later stage in the collapse. 
To illustrate this, consider a Reynolds number that may be defined for the collapsing region. 
A length scale is the radius of the mixed region, %, and a velocity scale is N a  o. Thus, a Reynolds 
number may be defined as 

Re -- Na2 
V 

where, for the experiment of Wu [7], this number is the order of 104. It would be bigger for 
larger-scale applications. When the mixed region deforms, the height becomes less so that a 
Reynolds number based upon this length scale would become smaller with increasing time. 
Thus, though viscous or diffusive effects will ultimately become important, an estimate of the 
earliest time of importance might be half a dozen V~iis~il~i-Brunt periods. Consequently, in the 
initial stage, these effects will be neglected. 

The collapse process is characterized by the dynamic response of the mixed region and its 
environment to the buoyancy force arising from the action of gravity on the perturbation of the 
environmental density field which defines the mixed region. At this time, no complete analytical 
description of the collapse process exists. However, several authors [5, 8] have suggested a 
model problem approach in which the dynamic response is restricted to the fluid within the 
mixed region. Although the motions in the surrounding fluid may be comparable in magnitude 
to those within the region, it is expected that this simplified model retains enough of the essential 
physics to provide a viable qualitative description of the initial accelerative stage of the collapse 
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process. The essential simplification introduced by the assumption that motions are restricted 
to the fluid within the mixed region is that the pressure at the boundary of the mixed region 
can be taken to be the hydrostatic pressure there. In approaching this model, a boundary 
value problem can be set up for the resulting fluid motions in the homogeneous region. Defining 
the velocity potential ~o by the relation r = -V~p, the boundary value problem is 

Vzq) : 0 ,  in mixed region 

N 2 z  2 (1) 
Oq~ �89 _ on B 
& 2 ' 

where q is the fluid speed. Using polar coordinates defined by the relations x = r cos 0, z = r sin 0, 
the velocity potential may be assumed to be of the form 

~0(r, 0, t) = ~ b,(t)r" exp(inO). (2) 
n=0 

This satisfies the governing equation exactly and the coefficients are obtained from the pressure 
boundary condition so that, to lowest order, 

N 2 t 
(p (r, 0, t) : ~ -  (a g -  r 2 cos 20). (3) 

The resulting velocity field corresponds to stagnation point flow which indicates that the 
circle deforms into the shape of an ellipse whose major axis is horizontal. The half-width of the 
mixed region is given by the expression 

a ( t ) : a o  1 + ~ -  O(N 4t 4) . (4) 

This solution could be extended to longer times by several techniques including the series 
method used by Penney and Thornhill [14] but the method presented in the following section 
seems more fruitful. 

3. Similarity solution 

The mathematical model (1) assumes continuity of pressure across the mixed region interface 
and that the pressure at the interface is the local hydrostatic pressure. This implies that no 
work can be done on the surrounding fluid by the mixed region and, consequently, that the 
total energy of the mixed region is conserved. 

In order to determine the energies of the mixed region, a similarity solution is assumed in 
which the shape of the region at any time may be obtained by a linear affine transformation of 
the shape at any other time. That is, the initially circular region will deform in the shape of an 
ellipse. The flow field inside the region which will produce a simple stretching transformation 
of its shape is stagnation point flow, 

v ' i  1 = x f ( t )  (5a) 

v "i2 = - - z f ( t ) .  (5b) 

It was shown in the previous section that this situation does obtain in the initial stage where 
that solution is valid. Now, the unknown function f ( t )  may be replaced by the expression 

1 da 
f ( t )  -- a(t) dt (6) 

where a(t) is the half-width of the mixed region. 
The kinetic energy is given by 

po f f  [vl2dxdz K =  T 
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where the integration extends over tiae entire mixed region. For the stagnation point flow (5a-b) 
with expression (6), the kinetic energy evaluates to 

-(da~ 2 a 2 (1 + a~a -4) (7) 7C 
K = Po -8 \ d t )  

where rtao 2 is the area of the region. The potential energy is determined as the work expended 
against the buoyancy force in creating the mixed region as a perturbation of the background, 
so that 

which evaluates to 

rc N2 a6 a_ 2 P = P o ~  (s) 

Introducing the nondimensional variables 

C~ = a / a  0 

= N t ,  

the conservation of total energy 

K + P = constant 

(9) 

implies that 

(1+cC4)&2+~-2-1  = 0. (10) 

The constant is determined from the potential energy available in the mixed region when 
initially at rest. Considering z as the dependent variable, equation (lO)may be integrated directly, 
yielding the solution 

= d( (11) 
1 ~ 1 - - (  - 2 ~  " 

It is readily verified that this represents an exact solution to the problem posed by Mei [5] and 
Padmanabhan et aI. [8]. 

The solution (11) is plotted in Figure 2, together with the results of the analyses by Mei [5] 
and Padmanabhan et al. [8]. Mei [-5] obtained a solution that is somewhat simpler than that 
given by expression (11). In particular, his solution neglects the kinetic energy of vertical 
motions and, correspondingly, his solution outdistances the solution (11). The numerical 
results of Padmanabhan et al. [8] are inexplicable. Since viscous effects are negligible for such 
small times, their inviscid and viscous solutions should be practically identical. There is no 
obvious reason why their solutions do not agree with each other and do not compare well with 
the present results. 

4. Partially mixed and three-dimensional regions 

The techniques developed in the preceding section are readily extended to partially mixed and 
three-dimensional regions. As a model for partial mixing, consider the system described in 
section 2, with the density within the region given by 

p , ( z )  = po 

where fli must be considered as a function of time. Assuming that the collapse process com- 
mences from a state of rest, then, since the density within the region is independent of x, the 
vorticity in the region is essentially zero for such times as viscous effects are negligible, and the 
stagnation poipt flow (5a, b) is a correct solution for the internal velocity field. Introducing the 
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Figure 2. Variation of mixed region half-width versus time for two-dimensional fully mixed region .......... asymptotic 
result, equation (4), exact result, equation (11), - - - - -  approximate result, Mei [5], - - - - - -  inviscid numerical 
result, Padmanabhan et al. [8], - . . . . . .  viscous numerical result, Padmanabhan et al. [8]. 

mixing parameter 

= f l~(O)/ f l ,  (12) 

which is zero for the fully mixed case treated previously and approaches unity for very small 
mixing, the potential energy in the partially mixed region is given by 

P = g [ p , ( z ) - ; ( z ' ) ] a z '  dxdz  
z - - t }  

where 6 is the displacement of a fluid particle from its equilibrium position. This displacement 
is given by 

g, = (1 - A / f l ) z  

and, hence, the potential energy is 

e = p o g n  N 2 ( l _ e a / a o )  aa 6a-2  . (13) 

The kinetic energy is changed from expression (7) by a term of order ilia o < 1. However, this 
term is of negligible importance in practical situations and it is omitted in this analysis. The 
omission of this term is not necessary but it is consistent with the Boussinesq approximation 
(cf. [15]). The conservation principle yields the differential equation 

(1 + c~-4)& z + (1 - 2ec@~- 2 _ (1 - 25) = 0 (14) 

for the variation of the mixed region half-width with time. 
An interesting feature of equation (14) is that its solution is oscillatory for e > �89 That  is, for 

sufficiently small mixing, the region undergoes a nonlinear oscillation. In the limit e--+l, the 
motion becomes sinusoidal with nondimensional frequency 2 -4. The frequency of oscillation 
has been evaluated numerically and is plotted in Figure 3 as a function of the mixing parameter 
e. It is a characteristic of the idealized model considered here that the oscillations are undamped. 
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Figure 3. Nondimensional frequency of oscillation, a/N, versus mixing parameter, e, for partially mixed two-dimen- 
sional region. 

Ifa more realistic model including energy transfer to the surrounding medium were constructed, 
any oscillations of the region would, of course, be damped as energy is fed into the internal wave 
field in the surrounding medium. Hartman and Lewis [10] have illustrated this in the limiting 
case of e--*l, for which the linear theory becomes valid. 

The three-dimensional generalization of the mixed region problem, that is, the collapse of an 
initially spherical mixed region, may also be considered in this framework. The appropriate 
similarity shape is an oblate spheroid, the interior velocity field being given by 

v . i ,  = x f ( t )  (15a) 

r .  i2  = y f ( t )  (15b) 

v . i  3 = - 2 z f ( t ) .  (15c) 

The kinetic and potential energies are obtained as integrals over an ellipsoidal volume rather 
than over an ellipse as before so that 

4n a -2  ( d a ~ 2 ( a 2 a o 2 + 2 a - 4 a ~ )  (16a) 
K = -i5 Po a~ \ d t /  

2n 
P = ~ p o N Z a - 4 a  9 . (16b) 

With the definitions (6) and (9), the conservation principle yields the equation 

( l -} -2~-6)~  2.1~-E(x-4 --El = 0 . (17) 

This may be integrated directly to yield the solution 
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1 1 - ~  -4 d~. (18) 

This is the solution of the axisymmetric problem and it is plotted in Figure 4. This solution, 
like that in the two-dimensional case, exhibits an initial quadratic dependence on time and a 
later linear dependence on time. The initial dependence on time is given by 

a(t)=ao 1 + ~ -  O(N4t 4) (19) 

and this agrees with the asymptotic solution of the three-dimensional boundary value problem 
as given by equations (1). In the three-dimensional case, the general solution that corresponds 
to expression (2) involves Legendre polynomials and, although tedious, the derivation of 
expression (19) from that solution is straightforward. 
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Figure 4. Variationofmixedregionhalf-widthversustime, three-dimensional result, equation ( t8)~----- -  two- 
dimensional result, equation (11). 
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Figure 5. Variation of mixed region half-width versus time for two-dimensional fully mixed region, - - - - - -asymptot ic  
result, equation (4), - -  exact result, equation (11), - - - - -  numerical result, Wessel [6] ........ .. experimental data, 
Wu [16-[. 
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5. Conclusions 

The primary results are given in Figures 3-5. The fully mixed two-dimensional case is the only 
one that has received much attention in the past. Mei [-5] and Padmanabhan et al. [-8] obtained 
approximate solutions of models of the collapse process that are identical to the model solved 
in closed form here. The comparison with their solutions is given in Figure 3. Also, Wu [7, 16] 
has obtained experimental results for the physical problem modelled here. The results are 
shown in Figure 5 along with the analytical results obtained here. The results of Wu [7, 16] do 
not show a quadratic time dependence for small time as do the present results. In fact, Wu [-7] 
assumed that the mixed region width in the initial stage increases practically linearly with time. 
Mei [5-] has pointed out that the early time width of the mixed region physically cannot in- 
crease faster than quadratically with time. Mei's [-5-] conclusions are substantiated by the present 
results but, anyway, the early time dependence might have been masked by the experimental 
method. The corresponding result predicted by Wessel [-6] by a numerical solution of the 
Navier-Stokes equations is also shown in Figure 5 and the time variation in the initial stage 
does agree well with our theoretical results. The shape of the mixed region used by Wessel was 
square instead of round but, for such times as the initially square region can be approximated 
by a rectangle, and motion in the surrounding fluid neglected, a similarity approach like that 
employed in this paper yields exactly the same result as obtained here. 
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